Distributed Python

In this chapter, we will cover the following recipes:

>

Using Celery to distribute tasks

How to create a task with Celery

Scientific computing with SCOOP

Handling map functions with SCOOP

Remote method invocation with Pyro4

Chaining objects with Pyro4

Developing a client-server application with Pyro4
Communicating sequential processes with PyCSP
Using MapReduce with Disco

A remote procedure call with RPyC

Introduction

The basic idea of distributed computing is to break each workload into an arbitrary number
of tasks, usually indicated with the name, into reasonable pieces for which a computer in

a distributed network will be able to finish and return the results flawlessly. In distributed
computing, there is the absolute certainty that the machines on your network are always
available (latency difference, unpredictable crash or network computers, and so on). So, you
need a continuous monitoring architecture.

Distributed Python

The fundamental problem that arises from the use of this kind of technology is mainly
focused on the proper management of traffic (that is devoid of errors both in transmission
and reception) of any kind (data, jobs, commands, and so on). Further, a problem stems from
a fundamental characteristic of distributed computing: the coexistence in the network of
machines that support different operating systems which are often incompatible with others.
In fact, the need to actually use the multiplicity of resources in a distributed environment has,
over time, led to the identification of different calculation models. Their goal is essentially

to provide a framework for the description of the cooperation between the processes of a
distributed application. We can say that, basically, the different models are distinguished
according to a greater or lesser capacity to use the opportunities provided by the distribution.
The most widely used model is the client-server model. It allows processes located on
different computers to cooperate in real time through the exchange of messages, thereby
achieving a significant improvement over the previous model, which requires the transfer

of all the files, in which computations are performed on the data offline. The client-server
model is typically implemented through remote procedure calls, which extend the scope of a
local call, or through the paradigm of distributed objects (Object-Oriented Middleware).This
chapter will then present some of the solutions proposed by Python for the implementation of
these computing architectures. We will then describe the libraries that implement distributed
architectures using the 00 approach and remote calls, such as Celery, SCOOP, Pyro4, and
RPyC, but also using different approaches, such as PyCSP and Disco, which are the Python
equivalent of the MapReduce algorithm.

Using Celery to distribute tasks

Celery is a Python framework used to manage a distributed task, following the Object-Oriented
Middleware approach. Its main feature consists of handling many small tasks and distributing
them on a large number of computational nodes. Finally, the result of each task will then be
reworked in order to compose the overall solution.

To work with Celery, we need the following components:

» The Celery module (of coursell)

» A message broker. This is a Celery-independent software component, the middleware,
used to send and receive messages to distributed task workers. A message broker
is also known as a message middleware. It deals with the exchange of messages in
a communication network. The addressing scheme of this type of middleware is no
longer of the point-to-point type but is a message-oriented addressing scheme. The
best known is the Publish/Subscribe paradigm.

152

Chapter 5

Broker will only dispatch

Messages awaiting dispatch more messages when the
to a consumer consumer has space
DN Broker

Publish

Producer

Producer waits until notified

> Consumer sends an ack when
by the broker it has more

its consumed

The message broker architecture

Celery supports many types of message brokers—the most complete of which are RabbitMQ
and Redis.

How to do it...

To install Celery, we use the pip installer. In Command Prompt, just type the following:

pip install celery

After this, we must install the message broker. There are several choices available for us to
do this, but in our examples, we use RabbitMQ, which is a message-oriented middleware
(also called broker messaging), that implements the Advanced Message Queuing Protocol
(AMQP). The RabbitMQ server is written in Erlang, and it is based on the Open Telecom
Platform (OTP) framework for the management of clustering and failover. To install RabbitMQ,
download and run Erlang (http://www.erlang.org/download.html), and then just
download and run the RabbitMQ installer (http://www.rabbitmg.com/download.html).
It takes a few minutes to download and will set up RabbitMQ and run it as a service with a
default configuration.

Finally, we install Flower (http://flower.readthedocs.org), which is a web-based tool
used to monitor tasks (running progress, task details, and graphs and stats).

To install it, just type the following from Command Prompt:

pip install -U flower

Distributed Python

Then, we can verify the Celery installation. In Command Prompt, just type the following:
C:\celery --version

After this, the text shown as follows should appear:

3.1.18 (Cipater)

The usage of Celery is pretty simple, as shown:

Usage: celery <command> [options]

Here, the options are as shown:

Options:
-A APP, --app=APP app instance to use (e.g. module.attr name)
-b BROKER, --broker=BROKER
url to broker. default is 'amgp://guest@
localhost//"
--loader=LOADER name of custom loader class to use.
--config=CONFIG Name of the configuration module

--workdi r=WORKING DIRECTORY
Optional directory to change to after

detaching.
-C, --no-color
-q, --quiet
--version show program's version number and exit
-h, --help show this help message and exit

» For more complete details about the Celery installation procedure, you can visit
www.celeryproject.com

How to create a task with Celery

In this recipe, we'll show you how to create and call a task using the Celery module. Celery
provides the following methods that make a call to a task:
» apply async(args[, kwargs[, ..]]):Thistask sends a task message

» delay(*args, **kwargs): Thisis a shortcutto send a task message, but does
not support execution options

Chapter 5

The delay method is better to use because it can be called as a regular function:
task.delay(argl, arg2, kwargl='x',6 kwarg2='y')
While using apply async you should write:

task.apply async (args=[argl, arg2] kwargs={'kwargl': 'x', 'kwarg2':
'y'})

How to do it...

To perform this simple task, we implement the following two simple scripts:

###
addTask.py :Executing a simple task
###

from celery import Celery
app = Celery('addTask', broker='amgp://guest@localhost//")

@app. task
def add(x, y):
return x + y
while the second script is

###
#addTask.py : RUN the AddTask example with
###

import addTask

if _name_ == '_main_ ':
result = addTask.add.delay(5,5)

We must note again that the RabbitMQ service starts automatically on our server upon
installation. So, to execute the Celery worker server, we simply type the following command
from Command Prompt:

celery -A addTask worker --loglevel=info

Distributed Python

The output is shown in the first Command Prompt:

— —r TR =<

~
BN Seleziona Prompt dei comandi - celery -A examplel worker —| info

Microsoft Windows [Uersione 6.1.766011 -
Copyright (c) 2089 Microsoft Corporation. Tutti i diritti erisewvati.

C:sUserssUtentesDesktopsPython CookBook+Python Parallel Programming INDEX-Chapter 5 — Dist
pibuted Python“chapter 4 — codes>celery —A examplel worker ——loglevel=info L
[2815-85-38 14:49:11,.374: YARNING-MainProcess] G:“\Python3d3slibssite—packagesscelerysappssw =
orker_py:161: CDeprecationWarning:

Btarting from version 3.2 Celery will refuse to accept pickle by default.

The pickle serializer is a security concern as it may give attackers

the ability to execute any command. It’s important to secure

your broker from unauthorized access when using pickle, =zo we think

that enabling pickle should require a deliberate action and not he

the default choice.

If you depend on pickle then vou should set a setting to disable this
arning and to be sure that everything will continue working

hen you upgrade to Celery 3.2::
CELERY_ACCEPT_CONTENI = [‘pickle’. ®json’. ‘msgpack’, *‘yaml’]

You must only enable the serializers that you will actually use.

warnings -warn(CDeprecat ionWarning{W_PICKLE_DEPRECATED)>
celeryBlltente-PC v3.1_18 {(Cipater?
Windows—7-6.1.7681-5F1

[config]l

.> app: tasks :Bx2a8df 70

.2 transpopt: angp:/sguest 2**@localhost 15672/
.» results: disahle

.» concurrency: 2 <(prefork)

[queues]
.? celery exchange=celery(direct? key=celery

[tasks]
- examplel.add

[2015-A5—38 14:49:11,.512: INFO/MainProcess] Connected to amgp://guest:=*=@127.8.8.1:5672//

[2015-A5-30 14:49:11,688: INFO/MainProcess] mingle: searching for neighbors
[2015-A5—38 14:49:12,621: INFO-/MainProcess] mingle: all alone
[2815-85-238 14:49:12,.648: YARNING-MainProcess] celeryBlUtente—PC ready.

Let's note the warnings in the output to disable pickle as a serializer for security concerns.
The default serialization format is pickle simply because it is convenient (it supports the task
of sending complex Python objects as task arguments). Whether you use pickle or not, you
may want to turn off this warning by setting the CELERY ACCEPT CONTENT configuration
variable; for reference, take a look at http://celery.readthedocs.org/en/latest/
configuration.html.

Now, we launch the addTask_main script from a second Command Prompt:

1 e o S R R O o

:sUserssUtentesDesktopsPython CookBook“Python Parallel Programming IMDEX“\Chapter 5 — Dist 2
ibuted Python“chapter 4 — codes>python addTask_main.py_

156

Chapter 5

Finally, the result from the first Command Prompt should be like this:

[2015-A5—3@ 15:19: : INFO-MainProcess] Connected to amgp:/ - guest:i*x@127.0.8.1:5672//
[2815-85-38 15:19: : INFi’MainProcess] mingle: searching for neighbors
== : INFO-MainProcess] mingle: all alone
: UARNING-MainProcess] celerylUtente—PC ready.
: INF0-MainProcess] Received task: addTask.add[2cBaf4c3-92%a—4a38-

: INFO-MainProcess] Task addTask.add[2cBaf4c3-92%a-4a38-9582-8d453h

: INFO-MainProcess] Received task: addTask.add[4bB76fad4-18c?-4d%e—

: INFO-MainProcess] Task addTask.add[4bB76fa4-18c?-4d%e—%abd—-bBhd6

#5-38 15:31:42,148: INFO-MainProcess] Received task: addTask.add[fe3?1d19-a8%f-488a—
af 21-d?f £ ?9cdd??51
[2015-A5—-38 15:31:42,144: INFO/MainProcess] Task addTask.add[fe391d19-aB89f-480a—af21-d7ff7
2cdd??5]1 succeeded in Bs: 18

The result is 10 (you can read it in the last line), as we expected.

Let's focus on the first script, addTask . py. In the first two lines of code, we create a Celery
application instance that uses the RabbitMQ service ad broker:

from celery import Celery
app = Celery('addTask', broker='amgp://guest@localhost//")

The first argument in the Celery function is the name of the current module (addTask . py)
and the second argument is the broker keyboard argument, which indicates the URL used to
connect the broker (RabbitMQ). Then, we introduce the task. Each task must be added with
the annotation (decorator) @app . task.

The decorator helps Celery to identify which functions can be scheduled in the task queue.
After the decorator, we create the task that the workers can execute. Our first task will be a
simple function that performs the sum of two numbers:

@app.task
def add(x, y):
return x + y

In the second script, AddTask _main.py, we call our task by using the delay () method:

if name == ' main ':
result = addTask.add.delay(5,5)

Let's remember that this method is a shortcut to the apply async () method, which gives
us greater control of the task execution.

